18. Sequences

b5d. Indeterminate Form \(\infty-\infty\)

The conjugate of a term \(a_n-b_n\) is \(a_n+b_n\).

Methods:

  1. Multiply and divide each term by its conjugate. This will convert the indeterminate form to \(\dfrac{\infty}{\infty}\). Then apply a technique for that indeterminate form.
  2. Put the terms over a common denominator.

Compute \(\lim\limits_{n\to\infty} \left(\dfrac{n^2}{n-1}-\dfrac{n^2}{n+1}\right)\).

We have \[ \lim_{n\to\infty}\dfrac{n^2}{n-1}=\infty \qquad \text{and} \qquad \lim_{n\to\infty}\dfrac{n^2}{n+1}=\infty \] So the limit has the indeterminate form \(\infty-\infty\). We put the terms over a common denominator: \[\begin{aligned} \lim_{n\to\infty} \left(\dfrac{n^2}{n-1}-\dfrac{n^2}{n+1}\right) &=\lim_{n\to\infty} \dfrac{n^2(n+1)-n^2(n-1)}{(n-1)(n+1)} \\ &=\lim_{n\to\infty} \dfrac{2n^2}{n^2-1}=2 \end{aligned}\]

Compute \(\lim\limits_{n\to\infty} \left(\sqrt{n+\sqrt{n}}-\sqrt{n}\right)\).

We multiply and divide by the conjugate, \(\sqrt{n+\sqrt{n}}+\sqrt{n}\): \[\begin{aligned} \lim_{n\to\infty} &\left(\sqrt{n+\sqrt{n}}-\sqrt{n}\right) \\ &=\lim_{n\to\infty} \dfrac{\left(\sqrt{n+\sqrt{n}}-\sqrt{n}\right)\left(\sqrt{n+\sqrt{n}}+\sqrt{n}\right)} {\left(\sqrt{n+\sqrt{n}}+\sqrt{n}\right)} \\ &=\lim_{n\to\infty} \dfrac{n+\sqrt{n}-n} {\sqrt{n+\sqrt{n}}+\sqrt{n}} \\ &=\lim_{n\to\infty} \dfrac{\sqrt{n}} {\sqrt{n+\sqrt{n}}+\sqrt{n}} \\ &=\lim_{n\to\infty} \dfrac{1} {\sqrt{1+\dfrac{1}{\sqrt{n}}}+1}=\dfrac{1}{2} \end{aligned}\] In the next to last step, we divided the numerator and denominator by \(\sqrt{n}\).

Compute \(\lim\limits_{n\to\infty} \left(\sqrt{n^2+4n}-\sqrt{n^2+5n}\right)\).

The conjugate is \(\sqrt{n^2+4n}+\sqrt{n^2+5n}\).

\(\lim\limits_{n\to\infty} \left(\sqrt{n^2+4n}-\sqrt{n^2+5n}\right)=\dfrac{-1}{2}\)

We multiply and divide by the conjugate, \(\sqrt{n^2+4n}+\sqrt{n^2+5n})\): \[\begin{aligned} \lim_{n\to\infty} &\left(\sqrt{n^2+4n}-\sqrt{n^2+5n}\right) \\ &=\lim_{n\to\infty} \dfrac{\left(\sqrt{n^2+4n}-\sqrt{n^2+5n}\right)\left(\sqrt{n^2+4n}+\sqrt{n^2+5n}\right)} {\left(\sqrt{n^2+4n}+\sqrt{n^2+5n}\right)} \\ &=\lim_{n\to\infty} \dfrac{(n^2+4n)-(n^2+5n)} {\left(\sqrt{n^2+4n}+\sqrt{n^2+5n}\right)} \\ &=\lim_{n\to\infty} \dfrac{-n} {\left(\sqrt{n^2+4n}+\sqrt{n^2+5n}\right)} \\ &=\lim_{n\to\infty} \dfrac{-1} {\left(\sqrt{1+\dfrac{4}{n}}+\sqrt{1+\dfrac{5}{n}}\right)}=\dfrac{-1}{2} \end{aligned}\] In the next to last step, we divided the numerator and denominator by \(n\).

Compute \(\lim\limits_{n\to\infty} \left(\dfrac{3n^3}{3n^2-1}-\dfrac{2n^3}{2n^2+1}\right)\).


Put it over a common denominator.

\(\lim\limits_{n\to\infty} \left(\dfrac{3n^3}{3n^2-1}-\dfrac{2n^3}{2n^2+1}\right)=0\)

We put the terms over a common denominator: \[\begin{aligned} \lim_{n\to\infty} &\left(\dfrac{3n^3}{3n^2-1}-\dfrac{2n^3}{2n^2+1}\right) \\ &=\lim_{n\to\infty} \dfrac{3n^3(2n^2+1)-2n^3(3n^2-1)}{(3n^2-1)(2n^2+1)} \\ &=\lim_{n\to\infty} \dfrac{5n^3}{(3n^2-1)(2n^2+1)} \\ &=\lim_{n\to\infty} \dfrac{\dfrac{5}{n}} {\left(3-\dfrac{1}{n^2}\right)\left(2+\dfrac{1}{n^2}\right)}=0 \end{aligned}\] In the next to last step, we divided the numerator and denominator by \(n^4\).

© MYMathApps

Supported in part by NSF Grant #1123255